Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(zprimes) → A__ZPRIMES
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__NATS(N) → MARK(N)
A__ZPRIMESA__NATS(s(s(0)))
A__ZPRIMESA__SIEVE(a__nats(s(s(0))))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zprimes) → A__ZPRIMES
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__NATS(N) → MARK(N)
A__ZPRIMESA__NATS(s(s(0)))
A__ZPRIMESA__SIEVE(a__nats(s(s(0))))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A__ZPRIMESA__NATS(s(s(0)))
A__ZPRIMESA__SIEVE(a__nats(s(s(0))))
The remaining pairs can at least be oriented weakly.

MARK(zprimes) → A__ZPRIMES
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__NATS(N) → MARK(N)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(A__FILTER(x1, x2, x3)) = x1   
POL(A__NATS(x1)) = x1   
POL(A__SIEVE(x1)) = x1   
POL(A__ZPRIMES) = 1   
POL(MARK(x1)) = x1   
POL(a__filter(x1, x2, x3)) = x1 + x2 + x3   
POL(a__nats(x1)) = x1   
POL(a__sieve(x1)) = x1   
POL(a__zprimes) = 1   
POL(cons(x1, x2)) = x1   
POL(filter(x1, x2, x3)) = x1 + x2 + x3   
POL(mark(x1)) = x1   
POL(nats(x1)) = x1   
POL(s(x1)) = x1   
POL(sieve(x1)) = x1   
POL(zprimes) = 1   

The following usable rules [17] were oriented:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
mark(zprimes) → a__zprimes
mark(nats(X)) → a__nats(mark(X))
mark(sieve(X)) → a__sieve(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__zprimeszprimes
a__nats(X) → nats(X)
a__sieve(X) → sieve(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(zprimes) → A__ZPRIMES
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__NATS(N) → MARK(N)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(s(X)) → MARK(X)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__NATS(N) → MARK(N)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(nats(X)) → MARK(X)
A__NATS(N) → MARK(N)
The remaining pairs can at least be oriented weakly.

MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(s(X)) → MARK(X)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(A__FILTER(x1, x2, x3)) = x1   
POL(A__NATS(x1)) = 1 + x1   
POL(A__SIEVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(a__filter(x1, x2, x3)) = x1 + x2 + x3   
POL(a__nats(x1)) = 1 + x1   
POL(a__sieve(x1)) = x1   
POL(a__zprimes) = 1   
POL(cons(x1, x2)) = x1   
POL(filter(x1, x2, x3)) = x1 + x2 + x3   
POL(mark(x1)) = x1   
POL(nats(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(sieve(x1)) = x1   
POL(zprimes) = 1   

The following usable rules [17] were oriented:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
mark(zprimes) → a__zprimes
mark(nats(X)) → a__nats(mark(X))
mark(sieve(X)) → a__sieve(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__zprimeszprimes
a__nats(X) → nats(X)
a__sieve(X) → sieve(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X2)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X3)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(filter(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

MARK(s(X)) → MARK(X)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( a__zprimes ) =
/1\
\0/

M( cons(x1, x2) ) =
/0\
\0/
+
/11\
\00/
·x1+
/00\
\00/
·x2

M( a__sieve(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( filter(x1, ..., x3) ) =
/0\
\1/
+
/10\
\01/
·x1+
/01\
\10/
·x2+
/01\
\10/
·x3

M( a__nats(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( nats(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( mark(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( s(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( a__filter(x1, ..., x3) ) =
/0\
\1/
+
/10\
\01/
·x1+
/01\
\10/
·x2+
/01\
\10/
·x3

M( 0 ) =
/0\
\0/

M( sieve(x1) ) =
/0\
\0/
+
/11\
\00/
·x1

M( zprimes ) =
/1\
\0/

Tuple symbols:
M( MARK(x1) ) = 0+
[1,1]
·x1

M( A__FILTER(x1, ..., x3) ) = 0+
[1,0]
·x1+
[0,0]
·x2+
[0,0]
·x3

M( A__SIEVE(x1) ) = 0+
[1,0]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
mark(zprimes) → a__zprimes
mark(nats(X)) → a__nats(mark(X))
mark(sieve(X)) → a__sieve(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__zprimeszprimes
a__nats(X) → nats(X)
a__sieve(X) → sieve(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(sieve(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(s(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(A__SIEVE(x1)) = 1 + x1   
POL(MARK(x1)) = x1   
POL(a__filter(x1, x2, x3)) = x1 + x2   
POL(a__nats(x1)) = x1   
POL(a__sieve(x1)) = 1 + x1   
POL(a__zprimes) = 1   
POL(cons(x1, x2)) = x1   
POL(filter(x1, x2, x3)) = x1 + x2   
POL(mark(x1)) = x1   
POL(nats(x1)) = x1   
POL(s(x1)) = x1   
POL(sieve(x1)) = 1 + x1   
POL(zprimes) = 1   

The following usable rules [17] were oriented:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
mark(zprimes) → a__zprimes
mark(nats(X)) → a__nats(mark(X))
mark(sieve(X)) → a__sieve(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__zprimeszprimes
a__nats(X) → nats(X)
a__sieve(X) → sieve(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimesa__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimeszprimes

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: